• Main Menu
  • C

    • Type Conversion – Class to Basic Type

      Type Conversion – Class to Basic Type

      The constructor handles the task of converting basic types to class types very well. But you cannot use constructors for converting class types to basic data types. Instead, you can define an overloaded casting operator that can be used to convert a class data type into a basic data type. The general form of an

    • Deleting an Element from a Heap

      Deleting an Element from a Heap

      Deleting an Element from the Heap Deletion always occurs at the root of the heap. If we delete the root element it creates a hole or vacant space at the root position. Because the heap must be complete, we fill the hole with the last element of the heap. Although the heap becomes complete, i.e.

    • Depth First Search Algorithm

      Depth First Search Algorithm

      A DFS algorithm, as the name implies, is used to search deeper in the graph, whenever possible. The edges are explored, out of the most recently discovered vertex v that still has unexplored edges leaving it. When all of v's edges have been explored, the search backtracks to explore edges leaving the vertex from which

    • Constructors in Derived Classes

      A constructor plays a vital role in initializing an object. An important note, while using constructors during inheritance, is that, as long as a base class constructor does not take any arguments, the derived class need not have a constructor function. However, if a base class contains a constructor with one or more arguments, then

    • Circular Queue

      Circular Queue

      The difficulty of managing front and rear in an array-based non-circular queue can be overcome if we treat the queue position with index 0 as if it comes after the last position (in our case, index 9), i.e., we treat the queue as circular. Note that we use the same array declaration of the queue.

    • Deleting an Element from a Doubly Linked List

      Deleting an Element from a Doubly Linked List

      To delete an element from the list, first the pointers are set properly and then the memory occupied by the node to be deleted is deallocated (freed). Deletion in the list can take place at the following positions. At the beginning of the list At the end of the list After a given element Before

    • Deleting an Element from a Linear Linked List

      Deleting an Element from a Linear Linked List

      To delete an element from the list, first the pointers are set properly and then the memory occupied by the node to be deleted is deallocated (freed). This tutorial covers the deletion of a node from the following three positions: At the beginning of the list At the end of the list After a given

    • Trees

      Trees

      Arrays, linked lists, stacks and queues are used to represent linear and tabular data. These structures are not suitable for representing hierarchical data. In hierarchical data we have ancestors, descendants superiors, subordinates, etc Family Structure Business Corporate Structure Federal Government Structure Introduction to Trees Fundamental data storage structures used in programming Combine advantages of ordered

    • Address Calculation Sort

      In this method, a function fn() is applied to each key. The result of this function determines into which of the several sub-files the record is to be placed. The function should have the property that x <= y, fn (x) <= fn (y). Such a function is called order preserving. Thus all of the

    • Exception Handling

      Exception Handling

      There are two kinds of exceptions, namely, synchronous exceptions and asynchronous exceptions. Errors such as “out-of-range index” and “over-flow” belong to the synchronous type exceptions. The errors that are caused by events beyond the control of the program (such as keyboard interrupts) are called asynchronous exceptions. The proposed exception handling mechanism in C++ is designed

    c
    168 queries in 0.209 seconds.